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Abstract. We study indexed necessity modalities in intuitionist S4. These pro-
vide the logical foundation required by a variety of applications, such as capa-
bility-based policy languages for access control and type theories for exceptional
computation. We establish noninterference properties capturing the limitations on
information flow between formulas under the scope of necessity modalities with
different indices.

1 Introduction

Classical S4 is standard textbook material [[11]]. The intuitionist versions of S4 are also
well explored [6/1415[10]. We recall briefly. For any formula o, O is also a formula.
The necessity modalit satisfies the following three axioms and rule of inference.

O(a=p)=0c=08 (K: distribution)
Oo= o (T: reflexivity)

Oo= 00« (4: transitivity)

If o is a theorem, so is Do (N: necessitation)

In this paper, we investigate the metatheory of indexed intuitionist S4 necessity modal-
ities. Let (£, <) be a preorder and let a, b range over elements of .#. We consider a
family of modalities, indexed by elements of ., such that:

For each a, the modality O, satisfies [K,T,4,N] above (Necessity modality)
If b < a, then O,0 = 0,0 (Principal naturality)

Such indexed necessity operators arise naturally in a variety of settings. We consider
two examples from the literature below.

Security Policies. In this example, (¢, <) is a lattice whose elements are security
principals. In different applications, principals might represent users, roles, locations,
or processes, etc. The ordering in the lattice is the security order: if b < a, then b is less
secure than a.

The indexed necessitation operator is used to capture the possession of capabili-
ties [I8/7]. Let object references, o, be atomic formulas. Then, 0,0 is intended to spec-
ify that a is permitted to possess object reference o. The formula O, (0 = 0') specifies
a guarded object, such as a ciphertext. By distribution (K), b gets the capability to the
plaintext, written O,0’, whenever it gets the key, written O 0.

In this application, principal naturality captures the idea that more secure principals
have access to more capabilities.

! The modality has highest precedence; eg. Dot = B stands for (Do) = .
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Exceptional computations. The elements of the lattice are sets of exceptions. The or-
dering in the lattice is the subset order, i.e., b < aif b C a.

The necessity operator is used in the type theory to capture the names of the excep-
tions that can be raised in evaluating an expression [13/12]. For example, consider O,
for a modality-free intuitionist formula ¢.. An expression has this type if the follow-
ing conditions hold: if its evaluation terminates normally, it results in a value of type
a; and, any exception that it raises during an abnormal evaluation is contained in the
set a. Thus, a is an upper bound on the exceptions that can be raised in evaluating an
expression of this type; e.g., a pure functional program of type o that does not raise
any exceptions is given the type Ogo. Since all types are (at least implicitly) under the
scope of an indexed modality, axiom (T) plays a limited role in this treatment.

Principal naturality is a conservative coercion that permits us to increase the upper
bound on the set of exceptions that could be raised in evaluating an expression.

Noninterference. Noninterference is the idea that there is no information flow between
differently indexed modalities. Let o be a modality free formula. The intuitive idea
behind noninterference is that if O, is derivable from some deductively closed set of
hypotheses, then it is derivable from a subset of those hypotheses that are in the scope
of the modality indexed by a, i.e. the formulas of the form O,. Thus, computations
of values of a types are isolated from types that are not in the scope of an a indexed
modality.

Noninterference implies the non-provability of some simple formulas. Let p be a
proposition, and b A a. Then, the following formulas are not provable.

|7[ Upp = Uup
Y ((Oap = q) & Opp) = Oug

Noninterference is essential to justify the use of indexed necessity modalities in the
modeling of both motivating examples.

— The policies for capabilities are used in access control in a distributed system. The
unprovability of O,p = O,p ensures that the logical reasoning does not permit ca-
pabilities to be transferred unrestrictedly between principals. The unprovability of
((O.p = ¢q) & O,p) = O,q ensures that the acquisition of new capabilities (p) by
another principal (b) does not create new capabilities for a principal (a) by purely
logical reasoning.

— In the modeling of exceptions, the consequences of noninterference are best seen in
computational terms using the Curry-Howard isomorphism. The unprovability of the
two formulas above captures the intuitive idea that there are no pure terms that can
catch and handle the exceptions in b \ a. More generally, noninterference identifies
the computations that can be queried during the evaluation of a pure expression in
the scope of a O,; clearly, any computation of a type O, cannot be queried if a Z b.

Results. We describe an intuitionist logic with indexed necessity operators. Our sequent
calculus is a multi-principal variant of the sequent calculus for intuitionist S4 described
by Bierman and de Paiva [6]. Our particular design is guided by Abadi’s formalization
of the “says” monad [1] and games models of this monad [4] .
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Our statement of noninterference follows Abadi’s statement for monadic logics [[1]].
We describe a translation of logical formulas into intuitionist propositional logic. The
main technical result is that the translation preserve provability, i.e., if the source for-
mula is a theorem in our logic (with indexed modalities), the target formula is provable
in standard intuitionist propositional logic. This preservation validates the intuitive idea
that the proof of a formula 0,0 does not essentially use formulas that are not in the
scope of O,.

As simple illustrations of the power of this approach, we show how this result is used
to establish the non provability of formulas, including the two unprovable formulas
considered earlier in this introduction.

Our noninterference theorem has the form, “for all valid proofs, there exists a trans-
lated proof that is valid in intuitionist propositional logic.” Consequently, our results
hold for any stricter logic that supports fewer proofs. In particular, our results hold for
the canonical presentation of the Intuitionist S4 necessity modality. Thus, our nonin-
terference theorem is robust: it is independent of our particular modeling of indexed
intuitionist necessity.

Related Work. Intuitionist S4 is well explored. For example, Bierman and de Paiva [6]
and Alechina, Mendler, de Paiva and Ritter [5] study categorical models of proof and
provability. Pfenning and Wong [[14] study the proof theory. We do not present a nat-
ural deduction system; the above papers discuss the subtle accommodations needed to
facilitate the commutative conversions. Goubault-Larrecq and Goubault [10] study the
geometry of the proofs of intuitionist S4 using tools from algebraic topology. None of
this prior work studies principal-indexed modalities, nor does it address noninterfer-
ence.

Our exploration of noninterference results is inspired by the modeling of access con-
trol using “says” monads and the study of the meta theory of these logics [2/319/1115].
Our proof of noninterference builds on the translation-based proof pioneered in this
research [1/15]. Our adaptation of these methods uses normal forms inspired by game
semantics of monads [4]. This adaptation perforce has some new ingredients because
the necessity modality is not “dual” to monads. The dual of the necessity modality in
classical S4 is the possibility modality and not the says modality; the says modalities
distributes over conjunction and the possibility modality does not.

Rest of the Paper. In section[2l we describe a sequent calculus for the logic. The follow-
ing section 3l describes our treatment of non interference. We conclude in section[4] In
appendix[A] we explicate the internal structure of our translation by a factorization result.

2 Logic

Let p, g range over a set of atomic propositions. Let (£, <) be a preorder, and let a, b,
¢ range over elements of .Z.

We consider intuitionist propositional logic with necessity modalities indexed by
elements of .. We include conjunction and implication but not disjunction. Formulas
are defined inductively as follows.

afyi=tt|pla&f|a=p| 00
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2.1 a-available

The following definition impacts the modality introduction rule on the right. Formally,
the format of the definition shadows Abadi’s treatment in logics for monads [[1].

Definition 1. a-available formulas are inductively defined as follows.

— tt is g-available.

— Opo is a-available if either b < a or & is a-available
- (B = a) is a-available if ¢ is a-available.

- (a & B) is a-available if both o and 3 are a-available.

This definition extends to sets, multisets, and sequences of formulas I" = ¢; ... o, point-
wise. I’ = a,..., 0 is a-available if all ¢, ..., o, are a-available. O

It will turn out that an g-available formula ¢ is one that satisfies &« = O, 0. In standard
presentations, these are the formulas of form O,. We motivate our more liberal presen-
tation using game semanticd [4]: a formula is a-available if the first move in the game
happens in the context of a principal lower in < than a. Thus, O, is a-available if
b < aor o is a-available. The first move in (8 = o) comes from ¢, so it is a-available
if o is. The first moves of (o & ) comes from either & or 3, so it is a-available if both
o, B are. tt is trivially a-available since it has no moves.

Lemma 2. If b < a and o is b-available, then o is a-available. O

2.2 Sequent Calculus

The sequent calculus for the logic is given in Figurelll Our sequent calculus is a multi-
principal variant of the necessity fragment of the sequent calculus of Bierman and De
Paiva [6]. The only modification is in the PROMOTE rule that uses our more generous
variation of a-available.

Remark 3. Weakening is admissible [6]. This is the motivation for the weakening built
into AXIOM and PROMOTE. We do not present a natural deduction system; subtle ac-
commodations are needed to facilitate the commutative conversions [6J14]. O

Remark 4 (Standard theorems). The standard ingredients for intuitionist necessity are
derivable standardly. None of the following derivations use the third or fourth cases of
the Definition[Il

O,aF O0,0,0 (Comultiplication)
Bra o
OB8F0a (Functoriality)
DaB F O,a
O, F Og0 b=a (Principal naturality)

2 Abramsky and Jagadeesan [4]] describe game semantics for monads in a form that is easily
adapted to the current setting. Merely invert the inequality in the definition of condition (p6)
in that paper.
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(AXIOM) (cuT) (EXCHANGE) (WEAKENING) (CONTRACTION)
'Fo Aobp ryp,A-o o r,B,B,AFa

ot o AR rB,v,AFo rBra rB,A+o

(&-L) (&-R) (tt-L) (tt-R)

rp,y,A+a 'ta TEP I'a

I B&yAta FrFa&p Ittha TFtt

(=-R) (=-L) (COUNIT) (PROMOTE)

M 'tp I',ykao 'pro I'Fo I a-available

=y rg=yta ropro AF-Oua

Fig. 1. Sequent calculus

Comultiplication is derived using AXIOM on 0,0 followed by PROMOTE. Functori-
ality is derived using cut against COUNIT followed byPROMOTE. Principal naturality
is derivable starting with AXIOM on ¢, using cut against COUNIT (on b) followed by
PROMOTE. O

Remark 5 (Non-standard theorems). Sequences of nested modalities without interven-
ing connectives can be exchanged, providing commutativity of principals.

Op0q0F 0,00

COUNIT yields 0,0, F o. The second case of definition [1] ensures that 0,0, is
a-available, so use of PROMOTE yields O,0,0 F O,0. The third case of definition [I]
ensures that 0,0, is b-available, so use of PROMOTE yields the required result.

Let A ={ag,ay,...,a,} be a set of principals. Using commutativity of principals, we
can define, without ambiguity, 040 = 0404, -~ Og, 0.

Another nonstandard new theorem is:

o= Daﬁ F Da(a = Daﬁ)

Start with AXIOM on o = O,f3. The third case of definition[Ilensures that o = O,f is
a-available since O,f is, so use of PROMOTE yields the required result. O

3 Noninterference

We prove noninterference in this section. Our proofs rely on normal forms for formu-
las. These normal forms are inspired by game semantics. A unique result formula is one
whose game has a unique starting move. A multiple result formula may have multiple
starting moves. In syntactic terms, a unique result formula does not have any conjunc-
tion at the ultimate result type.

0 u=tt | pgqg| u=951 0,0 (Unique result formulas)
Us=8|u&d|o&pu (Multiple result formulas)
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Any formula ¢ is equivalent to a multiple result formula. This is proved by using the
following distributivity laws:

O4(0 & B) & O, &0,6
a=B&y) & (a=p)&(a=1y)

Remark 6. Moving to multiple result formulas does not affect a-availability. Thus, O,
(o & B) is a-available if and only if 0,0 & O, is a-available. Similarly, o = (8 & 7)
is a-available if and only if (ot = B) & (a = 7) is a-available.

Moving to multiple result formulas does not affect provability if axioms are used
only on propositions. We use the following basic facts. An induction on the length of
the proofs shows that if I', 3 & y+ o is provable, then so is I', B, v F « by a proof of
smaller length. Similarly, if I' - 3 & y is provable, then so are I' - 8 and " | y by
proofs of smaller length.

For any formula o, let (&)™ be the equivalent multiple result formulas. Similarly,
for any multiset of formulas I, let (I')™ be the equivalent multiset of multiple result
formulas. A simple induction on the length of the proof shows that if I" - « is prov-
able, then there is a proof (I")™ I (o)™ containing only multiple result formulas. As a
sample case, consider the case when the last rule is =-R, so we have the following.

(=-R)
'BrFn&y
reB=mné&mn)

In this case, we also have proofs of I', 3 - v and I', B F 5 of smaller length. So, by
induction hypothesis, we have proofs of (I', )™ + (1 )™ and (", )™ F ()™ . Using
=-R on each of these proofs followed by an application of &-R yields the required
proof of ()™ (B = yn)™ & (B = p)™. O

In the rest of this section, without loss of generality, we will assume that all the formulas
are multiple result formulas and axioms are used only on propositions.

3.1 Translations of Formulas

We describe two translations (o)} and (o), on multiple-result formulas by mutual
recursion. Both translations yield pure IPL formulas without any modalities. The trans-
lation (), is closest in spirit to the extant treatment of the says monad [1]], albeit
with modifications designed to accommodate the differences arising from the neces-
sity modality.

The translations share some common features: Both are structural and remove all
modalities. Both “delete” information by replacing some chosen subformulas by tt.

The intuition is that both translations try to ensure that results of a-available formulas
are not influenced by formulas that are not a-available. This is illustrated by considering
the translation of & = 8 when 3 is a-available. In this case, the translations ensure that
all the subformulas of o that are not a-available are replaced by tt. Viewing via the
lens of game semantics, the translations replace the non a-available formulas by the

empty game that interprets tt. Thus, the Opponent cannot move in these subformula
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occurrences. The upcoming preservation theorem (Theorem [13) shows that the proof
also does not need to make moves in this proposition instance, i.e. this subformula
instance is expendable to the proof.

(-), enforces more constraints: it also replaces the results that are not a-available by
tt.

Definition 7. For a formula o in multiple result normal form, define (@), (o), in IPL
as follows.

(tt) =tt (tt); =tt

(Pa  =vr (Pa  =tt

(@& P)i = () &(B)a (@& B)y = (o), & (B)a

Gl =@ oa), ={{o i
(a); = (B)}, B a— available - _

o= i = {{ae 2 (e B (= Bl = (o)s = (B

(0, s 0 = (o)}, (o)t
(O, 0t), =(00) s (o) F

Consider propositions p. (p) is p since there are no constraints that need to be en-
forced. However, since p is not a-available, (p), is tt.

(Y is fully compositional for all cases except implication & = 8 when f is a-
available. In this case, we switch to (o) to ensure that only a-available formulas influ-
ence a-available results.

(), is fully compositional for all cases except O, when b < a. In this case, we
switch to (o) because the enclosing modality O, intuitively has satisfied the constraint

of making the formula available to @, so we only need to enforce the constraints of (-).".

Example 8. (a) (p = q)f = (p=q). (b) (p = q), =tt. (©) (p = Ouq)y = (p =
DaQ>; = (tt = Q) U

Remark 9. The translations (-); and (-), are not semantically robust. They do not re-
spect equivalence of formulas. They have the desired properties explicated below only
on formulas in multiple result normal form. O

The translations coincide on a-available formulas. This confirms the intuition that they
differ only in the availability of the top-level formula.

Lemma 10. If o is a-available, then (o))} = (o). O

PROOF. By structural induction on ¢. The base cases for the induction are when « is
of the form tt and O, with b < a. In these cases, () = (a), by definition.

a

o)
It B,y are a-available: (B & v); = (B)g & (V)a = (B)a & (V)a = (B&Y)4

If yis a-available: (B = Y)q = (B)a = (Va = Bla = (Na = (B= )4
If b A a and B is a-available: (O0,8)F = (B)F = (B), = (OpB), O
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The next two lemmas are the key technical drivers that motivate the consideration of
normal forms for formulas in this proof. If the sole result of a single result formula is
not a-available, the (-); translation removes all non trivial information from it.

Lemma 11. If a unique result formula § is not a-available, then (6); < tt. O

PROOF. By structural induction on &. If & is of the form tt or p, (8), = tt by defi-
nition. If 6 is not a-available, for any o (ot = &), = (or), = (6), = (&), = tt; the
result follows. If b A a and § is not a-available: (0,0), = (8), ; the result follows by
the induction hypothesis. O

We are now able to confirm that the (-), translation is more restrictive than the ()7
translation.

Lemma 12. For all W in multiple result form, (1)} & (1), is provable. O

PROOF.

Single Result Formulas: Consider first the case when u is a formula § in single result
form. We prove the result by structural induction on the construction of &.

If & is of the form tt or p. In these cases, result follows since (8), =tt .

If § is a-available: (B = 6); = (B), = (0)F = (B); = (6), = (B =90),

If § is not a-available, = & is not g-available and result follows since (f = 7), = tt
by lemma

IFb £ a: (0,8)F = (8) = (8); = (0,);

If b < a: (0,6)F = (6)} =(0,6),

Multiple result formulas. Given the result for single-result formulas, the proof for mul-
tiple result formulas u follows by structural induction on the formation of u. O

3.2 Noninterference Theorem

Theorem 13. Let I', o be formulas in multiple result form. If I" - «, then:

(C)g F(a)g, and
(Fa {0y

are provable in intuitionist propositional logic. O

PROOF. Proof by induction on the structure of the proof of I" I- ¢.

Induction step for (I'), F (), . The proofs for the inductive case when the last rule is
any rule except COUNIT or PROMOTE are all similar. In each of these cases, the inductive
step to show (I'), F (&), follows because the translation {(-)), is compositional on
the structure of the propositional connectives and the universal quantifier.

For example consider the case when the last step in the proof of I - ¢ is &-R. So,
we have o = 8 & ¥ and the following proof structure:

r+p 'ty
'-B&y
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By inductive hypothesis, we deduce a proof of (I'),; = (B), and ('), - (7),. An
application of &-R yields (I'), + (B)
Bla &(V)a-

If the last rule is COUNIT, i.e.

- & (y), thus completing this case since (&), =

'Bra
F,DbBFOC

by induction hypothesis, we have a proof of (I')_,(B), I (a)_ . There are two cases
depending on the order between b, a.

b =< a By definition, (J,8), = (B)}. From lemma[12} (8)) F (B), is provable, so
we get required result by use of CUT with the proof above yielded by the induction
hypothesis.

b A a . By definition, (O0,8), = (B), . Hence, the induction hypothesis yields the re-

quired result.
If the last rule is PROMOTE, i.€.

I'-o

——  I' is b-available
I'+0,a

There are two cases depending on the order between b, a.

b < a By induction hypothesis on the (-)}" translation, we have a proof of
(M)a F o)

Since b < a, by lemmal2] I' is also a-available. So, by lemma[IQ (")} = (I') .
Also, by definition, (J,a), = (a)}.

b £ a . By induction hypothesis, we have a proof of

(Mg ey

By definition, (J,0), = (o),

a-

In either case, the required proof of (I'), F (O,a), coincides with the proof yielded
by the induction hypothesis. The additional formulas A on the left are added using
weakening.

Induction step for (I') = (&)} The translation ((-)). is compositional on the structure
of & and the modality. So, if the last rule is any except =-R or =-L, the inductive step
to show that (I'), F (&) holds follows immediately.

For example, consider the case when the last step in the proof of I" - ¢ is &-R. So,
we have oo = 8 & 7y and the following proof structure:

r+p 'ty
'-B&y
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By inductive hypothesis, we deduce a proof of (I')} - ()} and (I')} F (y)}. An
application of &-R yields (I')} + (B)} & (y).. This completes this case of the proof

since (@), = (B)a & (V)a -

If the last rule is =-R or =-L and the implication formula in question is 8 = 7,
there are two cases based on whether 7 is a-available or not.

If y is not a-available, the (-); translation is still compositional, i.e. (f = )i =

(B)} = (y)I and the proof is similar to case above.

If y is a-available, (B = 7). = (B), = (V).
=-R: The last rule is:

r,Bry
r-g=y

From induction hypothesis, we deduce the existence of a proof of

(M)a»(Bla = (Ma

and hence using (8 = 7), = (B), = (y),, a proof of:
(Mo EB=7a

Since 8 = yis a-available, (8 = v), = (B = 7). by lemma[lQl So, we deduce :
(C)a F(B="a

From lemma [12] the sequents (o); F (a), are provable for each o € I'. So, by
multiple uses of cut, we get a proof of: (')} (B = ¥)7 as required.
=-L: The last rule is:
r+p ryra
I''B=yFa

From induction hypothesis, we deduce the existence of proofs:

(Mo = (Bla (M)a»(Ma Flo)d

From lemma [12] the sequents (&), F (&), are provable for each o € T'. So, by
multiple uses of cut with the left proof, we get a proof of:

(Mo F{Ba
Using =-L with the right proof above yields a proof of:
(M)a»(Bla = (Ma F{o)g
Required result follows since (B = 7)1 = (B), = (V). O

The main use of this theorem is to prove that certain sequents are not provable. We
illustrate with very simple examples.
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Example 14. In all the following examples, we use theorem[I3] for (-) .

- If p-0O,p is provable,sois tt - p .
— Letb Aa. 1f O,pF O,p is provable , so is tt - p in IPL.
— Letb Aa. If O,p,0,(p = q) F O,q is provable, so is tt,p = g F gq.

Since tt - p and p = ¢ I~ ¢ are unprovable in IPL, all the above three sequents are
unprovable. O

4 Conclusions

Recent research in both type theories and security have used indexed necessity modal-
ities of intuitionist S4 as the logical foundations. Noninterference between the differ-
ent indices is a key metatheoretic property that is essential to the soundness of this
modeling. In this paper, we establish noninterference for indexed intuitionist necessity
modalities.

Our work is inspired by noninterference theorems for monads—logically speaking,
the “says” modality from logics for access control. However, to the best of our knowl-
edge, noninterference has not been investigated for the necessity modality. The dual
of the necessity modality is not the says modality but the possibility modality. So, our
proof incorporates novelties in the form of normal forms for intuitionist S4 inspired by
game semantics.

Our desire is to ultimately build a similar metatheory for a modal logic that incorpo-
rates both kinds of modalities. Such logics are already used for security policies and in
type theories for functional languages.

This research was supported by NSF CCF-0915704.
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A Factoring the Translation

The translations (-)} and (-}, can be factored into two pieces:

— Translations (| - |) and (|- |), remove principals and result in formulas in the frag-
ment of our logic that uses modalities indexed only by a. Thus, the target of this
translation is a variant of Intutionist S4.

— The standard forgetful translation from Intuitionist S4 into intuitionist propositional
logic simply erases all modalities.

For a formula o in multiple result normal form, define (|a|)/}, (|at]), as follows. The
only differences are in the cases for the modality.

I I
(pDi =p (pa =t
(e ;= 81 (@& B); (el & (B,
ol),, a _ ol),, a
(oval)y ={ Q502 sy ={ S 5%,
- + B a—avai
(lo= Bl ={ (o) Z (0 B walleble (o ), () = (B),

We are able to prove the analogue of theorem[13l If I" - o, then:

are provable. The proof uses the analogues for Lemmas [[0HI2] that are listed below.

1. If & is a-available, then (Ja|)} = (Ja|); ; furthermore, (||)} is a-available.
2. If a single result formula J is not a-available, then (|6]), = tt.
3. For all y in multiple result form, (|u|)} = (|u|), is provable.
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