
Lectures on
Proof-Carrying Code

Peter Lee
Carnegie Mellon University

Lecture 2 (of 3)
June 21-22, 2003

University of Oregon

2004 Summer School on Software Security

Back to our case study

Program AlsoInteresting
while read() != 0

i := 0
while i < 100

use 1
i := i + 1

The language

s ::= skip
| i := e
| if e then s else s
| while e do s
| s ; s
| use e
| acquire e

Defining a VCgen

To define a verification-condition
generator for our language, we
start by defining the language of
predicates

A ::= b
| A ∧ A

P ::= b
| P ∧ P
| A ⇒ P
| ∀i.P
| e? P : P

annotations

b ::= true
| false
| e ≥ e
| e = epredicates

boolean expressions

Weakest preconditions

The VCgen we define is a simple
variant of Dijkstra’s weakest
precondition calculus

It makes use of generalized
predicates of the form: (P,e)

• (P,e) is true if P is true and at least e
units of the resource are currently
available

Hoare triples

The VCgen’s job is to compute, for
each statement S in the program, the
Hoare triple

• (P’,e’) S (P,e)

which means, roughly:

• If (P,e) holds prior to executing S,
and then S is executed and it
terminates, then (P’,e’) holds
afterwards

VCgen

Since we will usually have the
postcondition (true,0) for the last
statement in the program, we
can define a function

• vcg(S, (P,i)) → (P’,i’)

I.e., given a statement and its
postcondition, generate the
weakest precondition

The VCgen (easy parts)

vcg(skip, (P,e)) = (P,e)

vcg(s1;s2, (P,e)) = vcg(s1, vcg(s2, (P,e)))

vcg(x:=e’, (P,e)) = ([e’/x]P, [e’/x]e)

vcg(if b then s1 else s2, (P,e)) =
(b? P1:P2, b? e1:e2)

where (P1,e1) = vcg(s1,(P,e))
and (P2,e2) = vcg(s2,(P,e))

vcg(use e’, (P,e)) = (P ∧ e’≥0,
e’ + (e≥0? e : 0)

vcg(acquire e’, (P,e)) = (P ∧ e’≥0, e-e’)

Example 1

Prove: Pre ⇒ (true,-1)

(true ∧ 2≥0 ∧ 3≥0, 2+0-3)
acquire 3
use 2

(true, 0)

(true ∧ 2≥0, 2+0)

Pre: (true,0)

Post: (true,0)

vcg(use e’, (P,e)) = (P ∧ e’≥0, e’ + (e≥0? e:0)

vcg(acquire e’, (P,e)) = (P ∧ e’≥0, e-e’)

Example 2

(true ∧ 1≥0 ∧ 2≥0 ∧ 3≥0, 2+1+0-3)
acquire 3

use 2

use 1

(true ∧ 1≥0 ∧ 2≥0, 2+1+0)

(true ∧ 1≥0, 1+0)

(true, 0)

vcg(use e’, (P,e)) = (P ∧ e’≥0, e’ + (e≥0? e:0)

vcg(acquire e’, (P,e)) = (P ∧ e’≥0, e-e’)

Example 3

(9≥0, (b?9:8) - 9)
acquire 9

if (b)

then use 5

else use 4

use 4

(b?true:true, b?9:8)

(5≥0, 9)

(4≥0, 8)

(4≥0, 4)

(true, 0)

vcg(if b then s1 else s2, (P,e)) =
(b? P1:P2, b? e1:e2)

where (P1,e1) = vcg(s1,(P,e))
and (P2,e2) = vcg(s2,(P,e))

Example 4

(8≥0, (b?9:8) - 8)
acquire 8

if (b)

then use 5

else use 4

use 4

(b?true:true, b?9:8)

(5≥0, 9)

(4≥0, 8)

(4≥0, 4)

(true, 0)

vcg(if b then s1 else s2, (P,e)) =
(b? P1:P2, b? e1:e2)

where (P1,e1) = vcg(s1,(P,e))
and (P2,e2) = vcg(s2,(P,e))

Loops

Loops cause an obvious problem
for the computation of weakest
preconditions

acquire n

i := 0

while (i<n) do {

use 1

i := i + 1

}

Snipping up programs

Broken into segmentsA simple loop

I

Pre

I
I

I

Pre

I

Post

Post

Loop invariants

We thus require that the programmer
or compiler insert invariants to cut
the loops

acquire n

i := 0

while (i<n) do {

use 1

i := i + 1

} with (i·n, n-i)

A ::= b
| A ∧ A

An annotated loop

VCgen for loops

vcg(while b do s with (AI,eI), (P,e)) =
(AI ∧ ∀i1,i2,….AI ⇒ b ? P’ ∧ eI≥e’,

: P ∧ ei≥e,
eI)

where (P’,e’) = vcg(s,(AI,eI))

and i1,i2,… are the variables modified in s

Example 5

(… \and n≥0, n-n)acquire n;

i := 0;

while (i<n) do {

use 1;

i := i + 1;

} with (i·n,n-i);

(0·n ∧ ∀i. …, n-0)

(i·n ∧ ∀i.i·n ⇒
cond(i<n,i+1·n ∧ n-i≥n-i,

n-i≥n-i)
n-i)

(i+1·n ∧ 1≥0, n-i)

(i+1·n, n-(i+1))

(i·n, n-i)

(true, 0)

Our easy case

Program Static
acquire 10000
i := 0
while i < 10000

use 1
i := i + 1

with (i·10000, 10000-i)

Typical loop invariant for “standard for loops”

Our hopeless case

Program Dynamic
while read() != 0

acquire 1
use 1

with (true, 0)

Typical loop invariant for “Java-style checking”

Our interesting case

Program Interesting
N := read()
acquire N
i := 0
while i < N

use 1
i := i + 1

with (i·N, N-i)

Also interesting

Program AlsoInteresting
while read() != 0

acquire 100
i := 0
while i < 100

use 1
i := i + 1

with (i·100, 100-i)

Annotating programs

How are these annotations to be
inserted?

•The programmer could do it

Or:
•A compiler could start with code
that has every use immediately
preceded by an acquire

•We then have a code-motion
optimization problem to solve

VCGen’s Complexity

Some complications:

• If dealing with machine code, then
VCGen must parse machine code.

•Maintaining the assumptions and
current context in a memory-
efficient manner is not easy.

Note that Sun’s kVM does
verification in a single pass and
only 8KB RAM!

VC Explosion

a == b

a == c

f(a,c)

a := x c := x

a := y c := y

a=b => (x=c => safef(y,c) ∧
x<>c => safef(x,y))

∧

a<>b => (a=x => safef(y,x) ∧
a<>x => safef(a,y))

Exponential growth in size of
the VC is possible.

VC Explosion

a == b

a == c

f(a,c)

a := x c := x

a := y c := y

INV: P(a,b,c,x)

(a=b => P(x,b,c,x) ∧

a<>b => P(a,b,x,x))

∧

(∀a’,c’. P(a’,b,c’,x) =>

a’=c’ => safef(y,c’) ∧
a’<>c’ => safef(a’,y))

Growth can usually be
controlled by careful placement
of just the right “join-point”
invariants.

Proving the Predicates

Proving predicates

Note that left-hand side of implications
is restricted to annotations

• vcg() respects this, as long as loop
invariants are restricted to annotations

A ::= b
| A ∧ AP ::= b

| P ∧ P
| A ⇒ P
| ∀i.P
| e? P : P

annotations

b ::= true
| false
| e ≥ e
| e = e

predicates

boolean expressions

A simple prover

We can thus use a simple prover
with functionality

•prove(annotation,pred) → bool

where prove(A,P) is true iff A⇒P

• i.e., A⇒P holds for all values of the
variables introduced by ∀

A simple prover

prove(A,b) = ¬sat(A ∧ ¬b)

prove(A,P1 ∧ P2) = prove(A,P1) ∧ prove(A,P2)

prove(A,b? P1:P2) = prove(A ∧ b,P1) ∧

prove(A ∧ ¬b,P2)

prove(A,A1 ⇒ P) = prove(A ∧ A1,P)

prove(A,∀i.P) = prove(A,[a/i]P) (a fresh)

Soundness

Soundness is stated in terms of a
formal operational semantics.

Essentially, it states that if

• Pre ⇒ vcg(program)

holds, then all use e statements
succeed

Logical Frameworks

Logical frameworks

The Edinburgh Logical Framework (LF)
is a language for specifying logics.

LF is a lambda calculus with
dependent types, and a powerful
language for writing formal proof
systems.

LF

The Edinburgh Logical Framework
language, or LF, provides an
expressive language for proofs-
as-programs.

Furthermore, it use of dependent
types allows, among other things,
the axioms and rules of inference
to be specified as well

Pfenning’s Elf

Several researchers have developed logic
programming languages based on these
principles.

One of special interest, as it is based on LF,
is Pfenning’s Elf language and system.

true : pred.
false : pred.

/\ : pred -> pred -> pred.
\/ : pred -> pred -> pred.
=> : pred -> pred -> pred.
all : (exp -> pred) -> pred.

This small example
defines the abstract
syntax of a small
language of
predicates

Elf example

So, for example:

Can be written in Elf as

all([a:pred] all([b:pred]
=> (/\ a b) (/\ b a)))

true : pred.
false : pred.

/\ : pred -> pred -> pred.
\/ : pred -> pred -> pred.
=> : pred -> pred -> pred.
all : (exp -> pred) -> pred.

Proof rules in Elf

Dependent types allow us to
define the proof rules…

pf : pred -> type.

truei : pf true.

andi : {P:pred} {Q:pred} pf P -> pf Q -> pf (/\ P Q).

andel : {P:pred} {Q:pred} pf (/\ P Q) -> pf P.
ander : {P:pred} {Q:pred} pf (/\ P Q) -> pf Q.

impi : {P1:pred} {P2:pred} (pf P1 -> pf P2) -> pf (=> P1 P2).
alli : {P1:exp -> pred} ({X:exp} pf (P1 X)) -> pf (all P1).
e : exp -> pred

Proofs in Elf

…which in turns allows us to have
easy-to-validate proofs

… (impi (/\ a b) (/\ b a)
([ab:pf(/\ a b)]
(andi (ander ab)

(andel ab))))…) :

all([a:exp] all([b:exp]
=> (/\ a b) (/\ b a))).

LF as the internal language

Explanation

Code
Verification
condition
generator

Checker

Proof
rules

Agent

LF is the language of
the blue arrows

Host

Code producer Host

This store
instruction is
dangerous!

Code producer Host

I am convinced it is
safe to execute only if
all([a:exp] (all([b:exp]

(=> (/\ a b) (/\ b a)))

A verification condition

Code producer Host

… (impi (/\ a b) (/\ b a)
([ab:pf(/\ a b)]
(andi b a (ander a b ab)

(andel a b ab))))…)

λ

Code producer Host

Your proof
typechecks. I
believe you because
I believe in logic.λ

Code producer Host

	Lectures onProof-Carrying CodePeter LeeCarnegie Mellon University
	Back to our case study
	The language
	Defining a VCgen
	Weakest preconditions
	Hoare triples
	VCgen
	The VCgen (easy parts)
	Example 1
	Example 2
	Example 3
	Example 4
	Loops
	Snipping up programs
	Loop invariants
	VCgen for loops
	Example 5
	Our easy case
	Our hopeless case
	Our interesting case
	Also interesting
	Annotating programs
	VCGen’s Complexity
	VC Explosion
	VC Explosion
	Proving predicates
	A simple prover
	A simple prover
	Soundness
	Logical frameworks
	LF
	Pfenning’s Elf
	Elf example
	Proof rules in Elf
	Proofs in Elf
	LF as the internal language

