01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
package stdlib;
import Jama.Matrix;
import Jama.QRDecomposition;
/* ***********************************************************************
* Compilation: javac -classpath jama.jar:. MultipleLinearRegression.java
* Execution: java -classpath jama.jar:. MultipleLinearRegression
* Dependencies: jama.jar
*
* Compute least squares solution to X beta = y using Jama library.
* Assumes X has full column rank.
*
* http://math.nist.gov/javanumerics/jama/
* http://math.nist.gov/javanumerics/jama/Jama-1.0.1.jar
*
*************************************************************************/
public class XMultipleLinearRegression {
private final int N; // number of
//private final int p; // number of dependent variables
private final Matrix beta; // regression coefficients
private final double SSE; // sum of squared
private double SST; // sum of squared
public XMultipleLinearRegression(double[][] x, double[] y) {
if (x.length != y.length) throw new RuntimeException("dimensions don't agree");
N = y.length;
//p = x[0].length;
Matrix X = new Matrix(x);
// create matrix from vector
Matrix Y = new Matrix(y, N);
// find least squares solution
QRDecomposition qr = new QRDecomposition(X);
beta = qr.solve(Y);
// mean of y[] values
double sum = 0.0;
for (int i = 0; i < N; i++)
sum += y[i];
double mean = sum / N;
// total variation to be accounted for
for (int i = 0; i < N; i++) {
double dev = y[i] - mean;
SST += dev*dev;
}
// variation not accounted for
Matrix residuals = X.times(beta).minus(Y);
SSE = residuals.norm2() * residuals.norm2();
}
public double beta(int j) {
return beta.get(j, 0);
}
public double R2() {
return 1.0 - SSE/SST;
}
public static void main(String[] args) {
double[][] x = { { 1, 10, 20 },
{ 1, 20, 40 },
{ 1, 40, 15 },
{ 1, 80, 100 },
{ 1, 160, 23 },
{ 1, 200, 18 } };
double[] y = { 243, 483, 508, 1503, 1764, 2129 };
XMultipleLinearRegression regression = new XMultipleLinearRegression(x, y);
StdOut.format("%.2f + %.2f beta1 + %.2f beta2 (R^2 = %.2f)\n",
regression.beta(0), regression.beta(1), regression.beta(2), regression.R2());
}
}
|