
Reflections on Trust
Trust Assurance by Dynamic Discovery of Static Properties

Andrew Cirillo and James Riely?

DePaul University, School of Computing
{acirillo,jriely}@cs.depaul.edu

Abstract. Static analyses allow dangerous code to be rejected before it runs. The
distinct security concerns of code providers and end users necessitate that analysis
be performed, or at least confirmed, during deployment rather than development;
examples of this approach include bytecode verification and proof-carrying code.
The situation is more complex in multi-party distributed systems, in which the
multiple web services deploying code may have their own competing interests.
Applying static analysis techniques to such systems requires the ability to iden-
tify the codebase running at a remote location and to dynamically determine the
static properties of a codebase associated with an identity. In this paper, we pro-
vide formal foundations for these requirements. Rather than craft special-purpose
combinators to address these specific concerns, we define a reflective, higher-
order applied pi calculus and apply it. We treat process abstractions as serialized
program files, and thus permit the direct observation of process syntax. This leads
to a semantics quite different from that of higher-order pi or applied pi.

1 Security in Distributed Open Systems

In an open system, program code is under the control of mutually distrusting parties
prior to deployment. Local software security may be maintained in such a system by
using dynamic verification at load time, rejecting code that fails analysis. For example,
a client browser may validate embedded scripts before execution; a server application
may validate SQL queries derived from client input. It is common for virtual machines
to perform bytecode verification on class files loaded from remote sources [1]. Similar
approaches are taken in [2, 3].

Such analysis can establish local properties, for example, that unauthorized code
does not gain access to sensitive system resources. It is more difficult to obtain global
security guarantees, since no single observer has access to all of the required code.
Consider the simplest possible such system, consisting of a client and server. The client
may wish to ensure that sensitive data does not escape the server. Note that the client’s
trust in the organization running the server is not sufficient—the client must also trust
the software running on the server. If the software is buggy, the client may need to trust
all other clients as well. The client may not require a full proof of correctness on the
part of the server, but may be satisfied to know that the server’s runtime system has all
current security patches applied or that it performs some simple integrity checks on data

? This work was supported by the National Science Foundation under Grant No. 0347542.

2 Andrew Cirillo and James Riely

supplied by other users. The server has symmetric concerns, for example, restricting
client software in order to establish non-repudiation of a commercial transaction.

In current practice, attempts to establish such global properties are ad hoc and in-
formal: “If I only give my credit card number to pay-pal, everything will be fine.” The
biggest flaw of such policies is not that they lack formality, but that they are overly
restrictive. Lesser known vendors are high risk simply because they are lesser known.

Trusted computing [4] has the potential to enable less restrictive policies. Systems
that use trusted computing and remote attestation [5] conditionalize their interactions
with currently running, but physically distant, processes based on the identity of the
program code the remote party is running. Secure messages identify the code of their
senders; recipients trust the contents based on static properties of the senders’ code.

In prior work [6], we made a first step toward formalizing such systems, developing
a higher-order π calculus with ad hoc primitives for remote attestion and a type system
that enforced memory safety in the face of arbitrary attackers. Here we improve this
work by generalizing both the primitives of the language and the policies to which it
applies; we also provide a more powerful and realistic attacker model.

In practice, there are several operations available on an executable: (a) one can com-
municate it as data, (b) one can execute it, (c) one can identify it by comparing it syn-
tactically to another value, (d) one can extract data from it, or (e) one can disassemble it
and operate on its components. Operations (a) and (b) are features of what is commonly
refered to as higher order programming. Operations (c) through (e), which expose the
syntax of mobile code, are features of what might be called introspective, or reflective
programming.

Formalizing many aspects of open systems requires a reflective approach; trusted
computing requires at least syntactic identification of code, dynamic verification also
requires disassembly. While identification and data extraction are reasonably straight-
forward operations (see e.g., [6]), modeling the disassembly of an executable can be
complicated. For example, if primitive destructors for process syntax are used one must
take special precautions to keep names and variables from escaping their scopes, and
also to ensure that syntax is preserved by substitution.

Our key observation is that all three can be represented by extending higher order π

with pattern matching on abstractions. Our interest is to interalize static analysis at the
level of specification, rather than implementation. We are thus able to restrict pattern
variables to match subvalues, rather than subvalues and subprocesses. The langauge can
encode arbitrary calculations on the syntax of an abstraction by “guessing” the structure
of the program and substituting pattern variables for values that are not known a priori.
To make up for the loss of induction over process syntax, we allow an infinite number
of such processes in parallel. The language can thus model abstract specifications of
verifiers for static properties.

A language which allows explicit decomposition of processes has recently been pro-
posed by Sato and Sumii [7]; the language considered here represents a middle-ground,
giving a simpler syntax and semantics but with a slight cost in terms of expressive-
ness. In particular, while we can model arbitrary verifiers, we do not permit the verifiers
themselves to be treated as programs, which would then be subject to verification.

Reflections on Trust 3

The paper is structured as follows. In Section 2, we present the syntax and opera-
tional semantics of the language. In Section 2, we then develop a systematic method
for describing processes that perform dynamic verification. In Section 3 we apply the
theory to a simple type system that guarantees memory safety. In Section 4 we apply it
to a trusted computing platform.

2 A Reflective Pattern-Matching π-Calculus

In the face of attackers, the higher-order π calculus (HOπ) [8–10] raises subtle issues.
Consider the following example, where pub represents a public channel, accessible to
all parties including attackers, and passwd a channel accessible to only Alice and Bob.

Alice, νsecret.pub!((x,y)if x = passwd then y!secret)

Bob, pub?(prog)νb.(prog · (passwd,b) |b?(z)Q)

Sys, νpub.(Mallory |νpasswd.(Alice |Bob))

Alice creates a secret name (secret) and embeds it in an abstraction, which is then
written on the public channel. If the first argument x of the abstraction matches passwd
then the secret is written on the second argument y. Bob reads the code from the public
channel and instantiates it with passwd and a callback channel. After unlocking the
secret Bob continues as Q with z bound to secret.

Consider an arbitrary attacker, Mallory, who knows pub but not passwd. Because
Mallory has access to pub, he can intercept Alice’s program before it is received by Bob.
Once in possession of the program, Mallory need only inspect its contents to extract the
embedded secret without executing the code, thus circumventing the password check.

HOπ does not model this sort of attack, since HOπ abstractions may only be com-
municated as data or run. By analogy to object [11] and class [12, Ch. 5] serialization,
HOπ allows process abstractions to be serialized, but does not allow for inspection of
the serialized form. Nonetheless, such attacks are of direct relevance to practical sys-
tems [13], therefore in this section we extend HOπ with reflection features.

Reflective π. We define a local, value-passing, asynchronous higher-order π parame-
terized over a signature that specifies value constructors. A general-purpose pattern-
matching destructor works for any kind of value, including abstractions. As in pattern
matching spi [14], we equip pattern matching with a notion of Dolev-Yao derivability
that gives a semantics to cryptographic primitives by restricting patterns to those that
represent implementable operations. The resulting language is simple, yet powerful.

Syntax and Operational Semantics. A value signature (Σ) comprises three components:
a set of value constructors (f), a sorting that assigns each constructor an arity, and a
Dolev-Yao derivability judgement (
) that constrains value patterns. Fix a value signa-
ture. Values include names, variables, process abstractions and constructor applications;
processes include stop, local input, asyncronous output, application, parallel composi-
tion, restriction, replication, value construction and a pattern matching destructor. We
also allow some processes to contain infinite parallel components.

4 Andrew Cirillo and James Riely

REFLECTIVE π

Syntax:
L,M,N,S,T ::= a

∣∣ x
∣∣ (x)P ∣∣ f (M̃)

O,P,Q,R ::= 0
∣∣ a?N

∣∣M!N
∣∣M ·N

∣∣ΠiPi
∣∣ νa.P

∣∣ ∗P
∣∣ let x = f 〈M̃〉 in P∣∣ case M of ∃x̃.N in P where f n(N),(f v(N)− x̃),N
 x̃

Reduction Axioms:
(COMM) a?M |a!N −→M ·N

(APP) ((x)P) ·N −→ P{x := N}

(CONST) let x = f 〈M̃〉 in P−→ P{x := f (M̃)}

(CASE) case M{x̃ := Ñ} of ∃x̃.M in P−→ P{x̃ := Ñ}

We distinguish variables from names, allowing input only on names; therefore only
output capabilities may be communicated. This restriction makes examples simpler but
is not essential to the theory. We require that process abstractions have finite syntax ex-
cept when they are used as the right-hand side of an input process. The name a is bound
in “νa.P” with scope P. The variable x is bound in “(x)P” and in “let x = f 〈M̃〉 in P”
with scope P. The variables x̃ are bound in “case M of ∃x̃.N in P” with scope N and
P. Let f n and f v return free names and variables, respectively. Identify syntax up to
renaming of bound names and variables. Write “P{x := M}” and “N{a := M}” for the
capture-avoiding substitution of M for x in P and M for a in N. A constructor applica-
tion, f (M̃), is well-sorted if |M̃|matches the arity of f . Constructor applications in both
the value and process languages are assumed to be well sorted, as in applied π [15].

The variables x̃ are pattern bound in ∃x̃.N with scope N. We say that ∃x̃.N is a
well-formed pattern if x̃⊆ f n(N). A term (or process) is well-formed if every pattern it
contains is well-formed and if any variable x that occurs under a constructor application
is pattern bound by an enclosing pattern. For example, “case M of ∃x. f (x) in 0” is well-
formed, but “case M of ∃x. f (x) in a! f (x)” and “(x)a! f (x)” are not well-formed. In the
sequel, we assume that all terms are well-formed.

Note that while first order value passing languages, such as applied π [15], are of-
ten abstract with respect to the time at which a value is constructed, mixing reflection
and cryptography requires that we distinguish the code that creates a value from the
value itself. As an example, suppose “enc(M,N)” represents encryption of M with key
N and consider the abstraction “(x)a!enc(x,b)”; the missing payload implies that the
encryption has not yet taken place, in which case an observer should be able to extract
b. Similarly in “(x)a!enc(b,x)” we expect b to be visible. The case of “(x)a!enc(b,b′)”
is, however, ambiguous; if it represents a program that does an encryption then both
b and b′ should be visible, but if it represents a program embedded with an already-
encrypted message then neither should be visible. We resolve this ambiguity by provid-
ing an explicit construction call in the process language and requiring that constructor
applications in the value language contain no free (non-pattern) variables.

The pattern-matching destructor “case M of ∃x̃.N in P” allows nested matching into
constructed values and abstractions. We require that all bound pattern variables (x̃) oc-
cur at least once in N, and they may occur more than once. To match, all occurences of

Reflections on Trust 5

a pattern variable must match identical values. When matching abstractions we assume
that pattern variables are always chosen so as not to conflict with variables bound by
the abstraction.

Patterns are also constrained by the Dolev-Yao derivability judgement. The judge-
ment “M̃
 Ñ” expresses that the values Ñ can be constructed by agents with knowledge
of the values M̃. We then require that pattern variables be derivable from the terms men-
tioned explicitly in the pattern. For example, a sensible derivability judgement might
include “enc(x,M)
 x,” which would allow decryption when the key is specified, but
not “enc(x,y)
 x,y,” which would allow extracting both the contents and the key of an
encrypted message without specifying the key.

For clarity, we make use of a more concise syntax in written examples by observing
the following notational conventions. We omit binders from patterns clauses when they
are clear from context (as in case M of (x,y) in P). We omit unused bound variables,
writing ()P for (x)P when x 6∈ f n(P). We omit explicit let binders when the meaning
is clear, for example writing “a! f 〈x〉” for “let y = f 〈x〉 in a!y.” We also assume that a
value constructor for pairs is available and use the obvious derived forms for tuples.

As usual, operational semantics are described in terms of separate structural equiv-
alence and reduction relations. We elide the definition of structural equivalence and the
context rules for reduction, which are entirely standard for π calculi, and present only
the reduction axioms. COMM brings an abstraction and an argument together over a
named channel; APP applies an argument to an abstraction, substituting the argument
for the parameter variable; and CONST constructs a new value from a constructor sym-
bol and a series of arguments. CASE allows a pattern match to proceed only if the value
is syntactically identical (up to α-equivalence) to the pattern modulo a substitution for
the bound variables of the pattern. For example, the pattern ∃x.(y)a!x does not match
(y)a!(y,b) because the substitution of (y,b) for x would capture y, however the pattern
∃x.(z)a!(z,x) does match because the bound z can be renamed to y.

Equivalences. Behavioral equivalences are not the focus of this paper (see [10] for a
thorough introduction), however we very briefly note that adding reflection to HOπ in
almost any capacity will have a dramatic effect on its equivalences. In particular, any
equivalence closed under arbitrary contexts, which may have holes under abstraction
binders, collapses immediately to syntactic identity.

An interesting equivalence would therefore only consider contexts without holes
in abstractions (these could be called non-value contexts). Since they are transparent,
passing process abstractions in this context is no different than for any ordinary values
such as pairs or integers, hence the standard definitions for value-passing π-calculi [10,
Sec 6.2] can be used. While complications do arise in the presence of non-transparent
(i.e., cryptographic) values, these issues are orthogonal to higher-orderness and reflec-
tion and have already been addressed in the literature [16, 15].

Embedded Password Attack Revisited. We now reconsider the example above and see
that, as desired, it is not secure. Consider an attacker, Mallory, defined as follows.

Mallory M= pub?(prog)case prog of ∃(z1,z2).((x,y)if x = z1 then y!z2) in (. . .)

6 Andrew Cirillo and James Riely

As was the case with only a higher-order features, Mallory is able to intercept the
program file with an input on the public channel, pub. By using reflection, however,
Mallory is now also able to extract both the password and secret without running the
program. The continuation (. . .) has z1 bound to password and z2 bound to secret.

Dynamic Verification. A verifiable property is a property of abstractions that can be
decided by a static analysis tool that is invoked at runtime. We call such tools verifiers.
The proper use of a verifier can, for example, ensure the safety of a process even when
it executes code obtained from an untrusted source.

Formally, a verifiable property is a predicate on finite abstractions subject to the
following constraints. First, it must be at least semi-decidable. Second, we require that
it depend on a specific usage of only a finite set of names. Given a property, P , and
a set of names, S, we say that S supports P if for every M ∈ P and every a,b 6∈ S
where a 6∈ f n(M), M{b := a} ∈ P . We write supp(P) for the smallest set of names
that supports P and restrict our attention to properties that have supp(P) finite. As
an example of a predicate on values without finite support, impose an total ordering on
infinite subset of names ni such that ni < ni+1 and consider the predicate that insists that
only ni+1 may be output on ni. Such a predicate is not interesting to us, since names
have no inductive structure and therefore one cannot define an algorithm to decide it.

It is relatively easy to describe processes that implement verifiers using infinite syn-
tax. Treating properties as sets of values, we quantify clauses over elements of the
set. Note, however that it is not quite as simple as specifying one pattern that exactly
matches each element of the set. For example, the naive verifier,

a?((z))ΠM∈P
(
case z of M in ((x)P · z)

)
|ΠN 6∈P

(
case z of N in Q

)
inputs a value to be checked and then pattern matches all values that satisfy the property
continuing as P with the value bound to x, and all values that do not satisfy the property
continuing as Q. Quantification over all values, however, means that such a process
would reference not just an infinite subset of names but the whole universe of names,
thus violating important assumptions about bound names. With a little more effort,
though, we can build a verifier that has a finite set of free names provided that the
underlying property has finite name support, as in the following derived form.

DERIVED FORM: VERIFY

verify M as P (x) in P else Q M= νb.
(

ΠN∈P (case M of ∃z̃.N{ã := z̃} in b?()((x)P ·N{ã := z̃}))
|ΠL 6∈P (case M of ∃z̃.L{ã := z̃} in b?()Q) | b!b

)
where ã = f n(M)− supp(P) , z̃∩ (f v(P)∪ f v(Q)∪{x}) = /0 and |z̃|= |ã|

Now f n(verify M as P (x) in P else Q) = supp(P)∪ f n(M)∪ f n(P) f n(Q), hence it is
finite if and only if supp(P) is finite and M,P,Q have finite free names. The elimination
of uninformative names from patterns allows finite name dependency, but also causes
some of the pattern clauses under the quantification to overlap. We can be assured that
this overlap is safe because names outside of supp(P) by definition cannot affect the
satisfaction of the property, hence true patterns may only overlap with other true pat-
terns and false with false. The use of b as a signal channel prevents more than one clause
from executing so the behavior resembles that of a naive implementation.

Reflections on Trust 7

Note that this representation is general enough to allow one to express verifiers for
a wide range of analyses and properties, including even those that may not be finitely
realizable. In particular, when properties are only semi-decidable this representation
will be unrealistically powerful, however for the purpose of establishing safety theorems
the approach is adequate.

3 Typability as a Verifiable Property

The framework for dynamic verification presented above may be applied to any veri-
fiable property. A verifiable property is not necessarily a useful security property. For
example, it is verifiable that an executable is signed, but this does not impart any secu-
rity in itself. To establish a security theorem of some sort, we must choose a property
with provable security guarantees.

In this section we consider an example of such a property, formalizing a common ap-
proach to typing that guarantees the absence of certain runtime errors in the presence of
arbitrary attackers [17–21]. Typability in this type system represents a verifiable prop-
erty subject to implementation as an analysis procedure that can be invoked at runtime.
To provide support for interesting examples, we use a signature that includes some ba-
sic constructs that are useful in open distributed systems, including dynamically typed
messages [22] and cryptographic hashes and symmetric-key encryption.

The novelty is not in the type system itself, which is mostly standard, so much as
how it serves as an example for dynamic verification. For this reason we simplify the
typed language by supporting nested pattern matching only when extracted values can
be treated at type Top, and type-safe pattern matching only for top-level patterns. Many
of these restrictions can be eased using, for example, techniques developed in [14].

SIGNATURE (Σ)

Value Constructors (where f k is a constructor f of arity k):

Σ = unit0, pair2, dyn2, #1, enc2, →2, Unit0, ×2, Dyn2, Hash1, Un0, Top0, Ch1, Key1

Derivability Rules:

M̃,N
 N

M̃
 N1 . . . M̃
 Nk

M̃
 N1, . . . ,Nk

M̃
 Ñ

M̃
 f (Ñ)
M̃, Ñ
 L̃ f 6∈ {#,enc}

M̃, f (Ñ)
 L̃

M̃
 N′, L̃

M̃,enc(N,N′)
 N, L̃

Language. Assume a signature with the following values: unit and pair, which work
as usual; dyn(M,T), for dynamically-typed message that asserts that M is a value of
type T ; #(M) for the cryptographic hash of M; enc(M,N) for the message M encrypted
with key N; and type constructors Unit, Un, Top, Ch(T), T → Proc, Hash(T), Key(T),
and Dyn(M,T). We write “(M,N)” as shorthand for “pair(M,N),” we write abstraction
types postfix, as in “T → Proc,” and we write “Dyn” for “Dyn(unit,Unit).”

Derivability rules exclude only patterns that would allow one to derive the original
value of a cryptographic hash or the contents of an encrypted message without the key.
We elide the derivability rules for processes since process syntax is always transparant.

8 Andrew Cirillo and James Riely

Since they appear in dynamically typed messages, types are nominally first-class
values. Informally, we use T,S for values that represent types, however note that there
is no dedicated syntactic category for type values. Our treatment of dynamic typing is
standard except for our use of the type Dyn(M,T), which is explained later.

We avoid annotating processes with types primarily so we do not have to com-
mit to whether annotations should be visible to inspection or not (in comparison to
untyped machine code vs. typed bytecode). Annotations can instead be coded up us-
ing dynamically typed messages. We write “ν(a : T)P” for “νa.let x = dyn〈a,T 〉 in P”
where x 6∈ f n(P) when we wish to force the typechecker to commit to a specific type or
simply add clarity.

Safety and Robust Safety. Our objective is simply to prevent the misuse of a fixed set
of typed initial channels. Let the metavariable T range over a language of types that
includes type values, plus the non-first class type TYPE. A type environment (Γ) binds
names and variables to types in the usual fashion; we write “Γ 3 a : T ” to mean that
Γ = Γ′,a : T ,Γ′′ and a 6∈ dom(Γ′′). An initial typing is a type environment taking a set
of initial channels to channel types. An error occurs if a process violates the contract
of an initial channel by writing a non-abstraction value on a channel with a type of the
form Ch(T →Proc). Our focus on shape errors involving abstractions is arbitrary; other
errors are also possible.

Let ∆ be an initial typing with domain a1, . . . ,an. We say that a process P is ∆-safe
if whenever P =⇒ νb̃.(ai?M | ai!N |Q) and ∆(ai) = Ch(T → Proc), N is of the form
(x)R. We say that a process O is an initial ∆-opponent if for all a ∈ (f n(O)∩dom(∆)),
∆(a) = Ch(Un). We say that P is robustly ∆-safe if (O |P) is safe for an arbitrary initial
∆-opponent O.

Type System. We now present a type system that enforces robust safety. The system
includes type judgements for well-formed values and well-formed processes.

The rules for well-formed values are mostly standard: hashes of values of type T
type at Hash(T); names that are used as signing keys for values of type T type at
Key(T); encrypted messages type at Un and require that the content type be compatible
with the key type. The one novelty is in the rules for dynamically typed messages,
which allow a forwarder to delegate part of the task of judging the trustworthiness of a
message to the recipient. A message dyn(M,T) types at Dyn(N,S) if either M can be
typed at T , or N cannot be typed at S. Opponent values are constructed from names that
type at Ch(Un), cryptographic hashes and encrypted messages.

The rules for well-formed processes are similarly standard, except for the rules for
pattern matching. Specific rules are defined for top-level (non-nested) pair splitting,
typecase and decryption operations. A separate general-purpose rule permits pattern
matching with arbitrarily nested patterns but restricts pattern variables to Top.

The type rules support the use of dynamic types to authenticate data based on the
trust placed in the program that created it. For example, the type Dyn(#(N),Hash(S→
Proc)) can be given to messages that are known to have been received from a residual of
the abstraction N applied to an argument of type S. If the identity but not typability of the
sender is known, a forwarder can thus record the (code) identity of the sender without

Reflections on Trust 9

WELL-FORMED VALUES (Γ ` M : T)

Trusted Values:

Γ 3 a,x : T
Γ ` a,x : T

Γ,x : T ` P
Γ ` (x)P : T → Proc

Γ ` unit : Unit
Γ ` M : T Γ ` N : S

Γ ` (M,N) : T ×S

Γ ` T : TYPE

Γ ` Ch(T) : TYPE

Γ ` T : TYPE

Γ ` T → Proc : TYPE
Γ ` Top,Un,Unit,Dyn : TYPE

Γ ` T : TYPE

Γ ` Hash(T) : TYPE

Γ ` T : TYPE

Γ ` Key(T) : TYPE

Γ ` M : T Γ ` S : TYPE

Γ ` Dyn(M,S) : TYPE

Γ ` M : T
Γ ` M : Top

Γ ` T : TYPE Γ ` M : T Γ ` N : S
Γ ` dyn(M,T) : Dyn(N,S)

Γ ` M : T
Γ ` #(M) : Hash(T)

Γ ` M : T Γ ` N : Key(T)
Γ ` enc(M,N) : Un

Opponent Values:

Γ ` a : Ch(T) T ∈ {Un,Top}
Γ ` a : Un

Γ,x : Un ` P (∀a ∈ f n(P)) Γ ` a : Un

Γ ` (x)P : Un

Γ ` M̃ : Un

Γ ` f (M̃) : Un

Γ ` M : Un Γ ` N : T Γ 0 N : S
Γ ` M : Dyn(N,S)

Γ ` M : T
Γ ` #(M) : Un

judging whether the sender is acutally well-typed. If a later recipient can establish that
N does type at S→ Proc they can use the contents of the value safely.

Results. The main result of the type system is the following theorem of robust safety,
which states that well-formed processes are robustly safe. We elide the proof, which is
fairly standard and follows from lemmas for subject reduction (if Γ ` P and P −→ Q
then Γ ` Q) and opponent typability (if O is an initial ∆-opponent then ∆ ` O).

THEOREM (ROBUST SAFETY). If ∆ ` P then P is robustly ∆-safe.

Robust safety can be ensured, for example, by limiting interactions with opponents
to untyped data communicated over untyped initial channels, however using dynamic
verification one should also be able to safely accept and conditionally execute an ab-
straction from an opponent if the abstraction can be proven to be well typed. To this
aim we internalize the type system into the language by describing it as a verifier.

Let T be a type and ∆ type environment. Then P (M) = ∆, f n(M) : T̃op ` M :
T denotes a verifiable property supported by dom(∆). A verifier then has the form:
“verify M as P (x) in P else Q.” (Note that the addition of f n(M) : T̃op to the type en-
vironment allows accepted abstractions to contain arbitrary extra free names as long as
they do not affect typability.)

We are helped by the fact that the verifier is itself well-typed more or less by defini-
tion because the relevant clauses in the encoding are drawn from the set of well-typed
terms, which allows us to type x at T → Proc. If the verification succeeds x gets bound
to N in P. Since N types only at Un, the veri f y construct implements what amounts to

10 Andrew Cirillo and James Riely

WELL-FORMED PROCESSES (Γ ` P)

Trusted Processes:

Γ ` 0
Γ ` a : Ch(T) Γ ` M : T → Proc

Γ ` a?M
Γ ` M : Ch(T) Γ ` N : T

Γ ` M!N

Γ ` M : T → Proc Γ ` N : T
Γ ` M ·N

Γ ` P Γ ` Q
Γ ` P |Q

Γ,a : T ` P
Γ ` νa.P

Γ ` P
Γ ` ∗P

Γ ` f (M̃) : T Γ,x : T ` P

Γ ` let x = f 〈M̃〉 in P

Γ ` M : T ×S Γ,x : T ,y : S ` P
Γ ` case M of ∃(x,y).(x,y) in P

Γ ` M : Dyn(N,S) Γ ` N : S Γ ` T : TYPE Γ,x : T ` P
Γ ` case M of ∃x.dyn(x,T) in P

Γ ` M : Key(T) Γ,x : T ` P
Γ ` case M of ∃x.enc(x,M) in P

Γ ` M : T Γ, ỹ : T̃op ` N : T Γ, ỹ : T̃op ` P
Γ ` case M of ∃ỹ.N in P

Opponent Processes:

Γ ` a : Un Γ ` M : Un

Γ ` a?M
Γ ` M : Un Γ ` N : Un

Γ ` M!N
Γ ` M : Un Γ ` N : Un

Γ ` M ·N

Γ ` M : Un Γ, x̃ : Ũn ` N : Un Γ, x̃ : Ũn ` P
Γ ` case M of ∃x̃.N in P

a dynamic cast, allowing one to take arbitrary data from an untyped opponent and cast
it to a well-typed abstraction.

For example, suppose ∆
M= anet : Ch(Un),b1 : T1, . . . ,bn : Tn where T1−n 6= Ch(Un)

and define P (M) as ∆, f n(M) : T̃op ` M : (T1× . . .×Tn)→ Proc. Then the following
process is robustly ∆-safe.

∗anet?(x : Un)verify x as P (y) in (y · b̃)

The process repeatedly reads arbitrary values from an open network channel (anet) and
tests them dynamically to see if they are well-typed at (T1× . . .×Tn)→ Proc before
applying them to a series of protected channels. If b̃ represent, for example, a series
of protected system calls this process could represent a virtual machine that performs
bytecode verification, as well as many other applications of dynamic verification.

4 Example: Dynamic Verification and Trusted Computing

On its own, dynamic verification can be used to conditionalize the application of an ab-
straction on the results of static analysis of the program code. In this section we expand
the use of dynamic verification to also conditionalize interactions with running pro-
cesses using remote attestation. This solution utilizes a notion of code identity, whereby
an active process is identified by the process abstraction it started as.

Background. Trusted computing is an architecture for secure distributed computing
where trust is rooted in a small piece of hardware with limited resources known as the

Reflections on Trust 11

trusted platform module (TPM). The TPM is positioned in the boot sequence in such
a way that it is able to observe the BIOS code as it is loaded. It takes and stores the
hash of the BIOS as the system boots, thus establishing itself as the root of a chain-
of-trust; a secure BIOS records the hash of the operating system kernel with the TPM
before it loads, and a secure operating system records the hash of an application before
it is executed. If the BIOS and operating system are known to be trustworthy, then
the sequence of hashes will securely identify the currently running program. Remote
attestation is a protocol by which an attesting party demonstrates to a remote party
what code it is currently running by having the TPM sign a message with a private key
and the contents of its hash register. If the recipient trusts the TPM to identify the BIOS
correctly, and knows of the programs that hash to each identity in the chain, then they
can use static analysis of the program code to establish trust in the message.

Representing a Trusted Computing Platform. We represent a trusted computing frame-
work as follows. The TPM is represented by a process parameterized on a boot chan-
nel (aboot) and an attestation identity key (aaik). The TPM listens on the boot channel
for an operating system abstraction to load; upon receiving the OS (xos) it reserves
fresh attestation (bat) and check (bchk) channels and instantiates the OS with the new
channels. This calling convention is expressed as an abstraction type for “certifiable”
programs, which we abbreviate Cert. The TPM accepts requests on the attestation chan-
nel in the form of a message and callback channel. An attestation takes the form of a
message signed by the TPMs attestation identity key where the contents are a dynam-
ically typed message where the type is bounded by a provenance tag; that is, of the
form dyn〈ymsg,Dyn(#(xos),Hash(Cert))〉. This message is then encrypted with aaik and
returned on the callback. The check channel is provided to clients so that they can ver-
ify TPM signatures; the TPM simply tests the signature and, if successful, returns the
payload typed at Dyn.

DEFINITIONS

Cert M= (Ch(Dyn×Ch(Un))×Ch(Un×Ch(Dyn))×Ch(Dyn))→ Proc

T PM(aboot ,aaik)
M= ∗aboot?((xos,xarg))νbat .νbchk.

(
xos · 〈bchk,bat ,xarg〉

| ∗bat?((ymsg,yrtn))yrtn!enc〈dyn〈ymsg,Dyn〈#〈xos〉,Hash(Cert)〉〉,aaik〉
| ∗bchk?((zmsg,zrtn))case zmsg of enc(x,aaik) in zrtn!x

)
OS M= ((xat1,xchk,xarg))νbrun.

(
xarg!brun

| ∗brun?((yapp,yarg))νbat2.
(
yapp · 〈xchk,bat2,yarg〉

| ∗bat2?((ymsg,yrtn))xat1!(dyn〈ymsg,Dyn〈#〈yapp〉,Hash(Cert)〉〉,yrtn)
)

An example of a trustworthy operating system, OS, is initialized with an attestation
and a check channel. It repeatedly accepts outside requests to run abstractions; a fresh
attestation channel is created for each request that binds a message to the identity of the
abstraction before passing it on to the TPM. For user programs, such as virtual machines
or Internet browsers, that themselves host outside code, this protocol can be extended
arbitrarily. Each layer provides the next layer up with an attestation service that appends
the clients identity to a message before passing the request down. Attestation channels

12 Andrew Cirillo and James Riely

are general-purpose, therefore typing the ultimate payload of an attestation requires
dynamic types. The ultimate form of an attestation, then, is that of some nested series
of dynamically typed messages with the innermost carrying the payload and actual type
and each successive layer being of the form dyn(M,Dyn(#(N))) where #(N) identifies
the layer that generated M. The outermost message is then signed by the TPM.

Initial Processes. We assume that initial processes have the following configuration.
Execution occurs in the context of an initial environment (∆) consisting of a fixed num-
ber of Ch(Top)-typed channels (a1, . . . ,a j), an arbitrary number of Ch(Un)-typed chan-
nels (a j+1, . . . ,ak) and some number of additional channels (b̃) at various types. The
trusted world consists of k T PM processes which share a single aik key name but listen
on individual boot channels, and j subjects (P1, . . . ,Pj) with f n(Pi) ⊆ {ai}∪ b̃i where
b̃1, . . . , b̃ j are disjoint subsets of b̃, and a ∆-opponent (O) with f n(O)⊆ {ai | i > j}. The
opponent may control any number of TPM channels, but none that are in use by another
subject. No two subjects initially share a name that is not also known to the opponent,
therefore any secure communications between subjects has to be brokered by the TPM.(

νaaik.Πi≤k
(
T PM(aaik,ai)

))
|P1 | . . . | Pj |O

A typical subject “boots up” by sending the TPM an OS file and a fresh channel. After
receiving an OS callback, the subject loads some number of concurrent applications.
Each application receives its own identifying attestation channel from the operating
system.

Pi
M= νb.(ai!(OS,b) |b?(x)x!(APP1, b̃i) | . . . | x!(APPk, b̃i))

The robust safety of an initial process follows from the typability of T PM(aaik,ai) for
all i, which we establish informally by noting that (1) when the TPM receives a well-
typed OS, the new attestation channel will type at Ch(Dyn×Ch(Un)), and attestations
will have the form dyn(M,Dyn(#(OS),Hash(Cert))) which will be well typed because
Γ ` M : Dyn; and (2) when the TPM loads an untyped OS, the new attestation channel
will type at Ch(Top) and attestations will have the form dyn(M,Dyn(#(OS),Hash(Cert))),
which will be well typed because Γ 0 OS : Cert.

Using Attestations. Even a signed attestation cannot be automatically trusted. Because
the opponent controls some number of TPMs, the signature provides assurance only
that the message was created by a TPM that was initially running the particular abstrac-
tion that hashes to the attested identity. To trust the contents one must also trust that
the attesting abstraction (1) protects its attestation channel, and (2) only generates ac-
curate dynamic types, which in the case of nesting implies that a host program correctly
identifies a hosted application when attestations are created.

Destructing an attestation is a three-step process. First the signature is validated us-
ing the bchk channel provided by the TPM, which returns dyn(M,Dyn(#(OS),Hash(Cert))).
Second, the identity #(OS) is checked to ensure that it corresponds to an abstraction that
types at Cert. Dynamic verification cannot be used here because the original program
code is not recoverable from the hash, so checking the identity amounts to testing equal-
ity with something with which there is a priori trust. Attested messages will generally

Reflections on Trust 13

be nested so this process is repeated once per layer, eventually exposing a value of the
form dyn(L,T). This is matched against an expected type and the payload L is recov-
ered, typed at T . The processes of creating and destructing attestations are summarized
in the following derived forms:

DERIVED FORMS: ATTEST AND CHECK

let x = attest(Mat ,N,T) in P M= νb.Mat !(dyn〈N,T 〉,b) |b?(x)P

let x = check(Mchk,N,(L1...n),T) in P M= νb.Mchk!(N,b) |
(
b?(x)

case x of dyn(y1,Dyn(L1,Hash(Cert))) in...
case yn−1 of dyn(yn,Dyn(Ln,Hash(Cert))) in
case yn of dyn(z,T) in P

)
The robust safety theorem, combined with the typability of the derived forms for

attest and check, implies that any well-typed program written to use this infrastructure
is robustly safe.

Bidirectional Authentication with a Trusted Verifier. We now turn to a specific exam-
ple that uses trusted computing to allow two mutually distrusting parties to authenticate.
The parties initially share no secure channels, have no knowledge of the other’s program
code and are unwilling to share their source code with the other. (Swapping source code
may be unacceptable in practice due to proprietary interests, or simply performance rea-
sons.) The parties do however initially trust the same verifier which together with the
TPM is sufficient to establish bidirectional trust. This very general example is broad
enough to suggest a wide range of applications, particularly in the context of commu-
nication over the public Internet where parties are frequently anonymous.

The example comprises three software components: TV defines a trusted third-party
verifier, CLIENT defines the initiator of the communication, and SERVER defines the
other party to the communication. The trusted verifier inputs an abstraction on a pub-
lic channel (aver) and uses dynamic verification to test it for typability. If successful,
the hash of the abstraction is taken and packed into an attestation typed at Hash(cert),
which is returned to the requester to be used as a certificate. CLIENT and SERVER
are each passed their own abstractions when they are initialized, which they send to the
verifier to obtain certificates. CLIENT initiates the communication by sending first its
certificate and second an attested response channel on the public channel areq. SERVER
reads the certificate and uses it to trust the second message and recover the typed re-
sponse channel, on which it writes its own certificate and another attestation containing
the secret data.

TV M= ((xat ,xchk,_))aver?((yval ,yrtn))
verify yval as {M | Γ, f n(M) : T̃op ` M : Cert}(z1) in

let z2 = attest(xat ,#(z1),Hash(Cert)) in yrtn!z2

CLIENT M= ((xat ,xchk,xarg))νb.xarg!b |b?((xsel f))(νa.aver!(xsel f ,a) |a?(ycert)areq!ycert)
| (νbrsp.let yreq = attest(xat ,brsp,Ch(Top)) in (apub!yreq)
| brsp?(y)let zsid = check(xchk,y,(#(OS),#(TV)),Hash(Cert)) in

b?(y)let zdat = check(xchk,y,(#(OS),zsid),Ch(T)) in P)

14 Andrew Cirillo and James Riely

SERV ER M= ((xat ,xchk,xarg))νb.xarg!b |b?((xsel f ,xdat))νa.aver!(xsel f ,a) |a?(ycert)
apub?(y)let ycid = check(xchk,y,(#(OS),#(TV)),Hash(Cert)) in

apub?(y)let yreq = check(xchk,y,(#(OS),ycid),Ch(Top)) in
(yreq!ycert) | let yresp = attest(xchk,xdat ,T) in (yreq!yresp |Q)

We assume that all three components will be run on trusted platforms with CLIENT and
SERVER on distinct TPMs. Trust in the verifier is based on the identity of the program
code, not the party running it, therefore it can be run on its own TPM, or on the same
TPM as either party, or even as separate processes on both. The TPM therefore allows
parties to reliably certify their own code.

5 Conclusions

We have presented a new reflective variant of the higher-order π calculus that allows
for the dynamic inspection of process syntax and is useful for modeling open systems,
which often rely on such operations. Reflection has also been considered for the λ-
calculus [23, 24], and dynamic verification using type-checking primitives has been
considered in a π-calculus [25]. Allowing complete observation of process syntax in
a higher-order π-calculus, however, appears to be novel, noting concurrent work by
Sato and Sumii [7].

We considered two specific applications that use reflection: dynamic verification,
which relies on an ability to dynamically typecheck mobile code prior to execution, and
trusted computing, which relies on an ability to associate a running process with the
identity of the process abstraction it started as.

The genesis of this work was our previous work with trusted computing in higher-
order pi [6]. Many issues, such as code identity and allowing attackers to extract names
from mobile code, were considered in the previous paper but handled in an ad-hoc fash-
ion. This paper fulfills two additional objectives. First, it comprises a more foundational
and expressive approach to understanding such systems. Second, it has allowed us to
internalize static analysis. The approach to trusted computing in this paper lacks rich
access control features which were the focus of the prior paper, however adding them
would not be difficult.

References

1. Yellin, F.: Low-level security in Java. In: WWW4 Conference. (1995)
2. Necula, G.C.: Proof-carrying code. In: Principles of Programming Languages (POPL ’97).

(1997)
3. Riely, J., Hennessy, M.: Trust and partial typing in open systems of mobile agents. In:

Principles of Programming Languages (POPL 99). (1999)
4. Trusted Computing Group http://www.trustedcomputinggroup.org: TCG TPM Specifi-

cation Version 1.2. (March 2006)
5. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Computer and

Communications Security (CCS), New York, NY, USA, ACM Press (2004) 132–145
6. Cirillo, A., Riely, J.: Access control based on code identity for open distributed systems. In:

Trustworthy Global Computing, Springer-Verlag (November 2007)

Reflections on Trust 15

7. Sato, N., Sumii, E.: A higher-order, call-by-value applied pi-calculus. In: Seventh Asian
Symposium on Programming Languages and Systems (APLAS 2009), Springer-Verlag
(2009)

8. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis, University of Edinburgh (1993)

9. Sangiorgi, D.: Asynchronous process calculi: the first-order and higher-order paradigms
(tutorial). Theoretical Computer Science 253 (2001) 311–350

10. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge Uni-
versity Press (2001)

11. Sun Microsystems: Java Object Serialization Specification. (2005) Available at http://java.
sun.com/javase/6/docs/platform/serialization/spec/serialTOC.html.

12. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification Second Edition. Sun Mi-
crosystems (1999)

13. Anderson, N.: Hacking Digital Rights Management. ArsTechnica.com. (July 2006) http:
//arstechnica.com/articles/culture/drmhacks.ars.

14. Haack, C., Jeffrey, A.S.A.: Pattern-matching spi-calculus. In: Proc. IFIP WG 1.7 Workshop
on Formal Aspects in Security and Trust. (2004)

15. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: Principles
of Programming Languages (POPL ’01). (2001)

16. Abadi, M., Gordon, A.: A calculus for cryptographic protocols: The spi calculus. In: Infor-
mation and Computation. Volume 148. (1999) 1 to 70

17. Abadi, M.: Secrecy by typing in security protocols. J. ACM 46(5) (1999)
18. Gordon, A.D., Jeffrey, A.S.A.: Authenticity by typing for security protocols. J. Computer

Security 11(4) (2003)
19. Fournet, C., Gordon, A., Maffeis, S.: A type discipline for authorization policies. In: ESOP

’05. (2005)
20. Gordon, A.D., Jeffrey, A.S.A.: Secrecy despite compromise: Types, cryptography, and the

pi-calculus. In: CONCUR. (2005)
21. Fournet, C., Gordon, A., Maffeis, S.: A type discipline for authorization in distributed sys-

tems. CSF 00 (2007) 31–48
22. Abadi, M., Cardelli, L., Pierce, B., Plotkin, G.: Dynamic typing in a statically typed lan-

guage. ACM Transactions on Programming Languages and Systems 13(2) (1991) 237–268
23. Alt, J., Artemov, S.: Reflective lambda-calculus. Proof Theory in Computer Science (2001)

22 – 37
24. Artemov, S., Bonelli, E.: The intensional lambda calculus. Logical Foundations of Computer

Science (2007) 12 – 25
25. Maffeis, S., Abadi, M., Fournet, C., Gordon, A.D.: Code-carrying authorization. In: ES-

ORICS ’08: Proceedings of the 13th European Symposium on Research in Computer Secu-
rity, Berlin, Heidelberg, Springer-Verlag (2008) 563–579

